The Orbit Equivalence Class of The Non-Singular Shift

Nachi Avraham-Re'em

Einstein Institute of Mathematics, The Hebrew University of Jerusalem

October-November, 2022

Descriptive Dynamics and Combinatorics Seminar, McGill

Product measures

Definition (product measures)

A probability measure μ on $2^{\mathbb{Z}}$ is a **product measure** if the coordinates X_n , $n \in \mathbb{Z}$, are independent w.r.t. μ .

- A product measure is denoted $\mu = \bigotimes_{n \in \mathbb{Z}} \mu_n$.
- $\mu = \bigotimes_{n \in \mathbb{Z}} \mu_n$ is **regular** if there is $\delta > 0$ s.t. $\mu_n(a) \ge \delta$.

Theorem (Kakutani's dichotomy (48'))

If $\mu = \bigotimes_{n \in \mathbb{Z}} \mu_n$ and $\nu = \bigotimes_{n \in \mathbb{Z}} \nu_n$ are supported on the same cylinders, they are either equivalent or totally singular.

Moreover:
$$\mu \sim \nu \iff \sum_{n \in \mathbb{Z}} \sum_{a} \left(\sqrt{\mu_n(a)} - \sqrt{\nu_n(a)} \right)^2 < \infty$$
.

Markov measures I

Definition (Markov measures)

A probability measure μ on $2^{\mathbb{Z}}$ is a **Markov measure** if for every n, conditionally on X_n , the mutual distribution of \ldots, X_{n-2}, X_{n-1} is independent of X_{n+1}, X_{n+2}, \ldots

- A Markov measure is denoted $\mu = \mu_{(P_n)_{n \in \mathbb{Z}}}$ where $(P_n)_{n \in \mathbb{Z}}$ is the stochastic matrix $P_n(a,b) = \mu(X_{n+1} = b | X_n = a)$.
- μ(P_n)_{n∈Z} is **regular** if there is a positive integer M and δ > 0
 s.t. μ(X_{n+M}=b|X_n=a)=P_n…P_{n+M}(a,b)≥δ.
- In order for the shift to be non-singular, all the matrices P_n need to share the same support. Thus, the support of a Markov measure is a sub-shift of finite type.

Markov measures II

- Kakutani's dichotomy fails for general Markov measures.
- The reason is that Markov measures do not have tail 0-1 law.

Theorem (A-R (22'))

Regular Markov measures $\mu = \mu_{(P_n)_{n \in \mathbb{Z}}}$ and $\nu = \nu_{(Q_n)_{n \in \mathbb{Z}}}$ are either equivalent or totally singular. There is a quantitative criteria, generalizing Kakutani's criteria, to decide between these alternatives.

- The proof is purely probabilistic in nature.
- If μ is a Markov measure on $2^{\mathbb{Z}}$, the push-forward of μ by the shift is again a Markov measure.

Recap I

- (X, μ) is a standard non-atomic measure space.
- Aut $(X, [\mu])$ is the group of invertible transformations $T : X \to X$ s.t. μ and $\mu \circ T$ are equivalent.
- For $T \in Aut(X, [\mu])$ the R-N cocycle is $\psi_T(x) = \log \frac{d\mu \circ T}{d\mu}(x)$.
- A non-singular action $G \curvearrowright (X, \mu)$ is a group-homomorphism $G \rightarrow \operatorname{Aut} (X, [\mu]).$

Ergodicity: $G \curvearrowright (X, \mu)$ is **ergodic** if every set $A \subset X$ with $G.A \subset A$ satisfies $\mu(A) = 0$ or $\mu(X \setminus A) = 0$.

Recurrence: $G \curvearrowright (X, \mu)$ is **recurrent** if for every set $A \subset X$ there is a $g \in G$ s.t. $\mu(A \cap g.A) > 0$.

Recap II

- $G \curvearrowright (X, \mu)$ is a non-singular action.
- $r \in \mathbb{R}$ is an **essential value** if for $A \subset X$ and $\epsilon > 0$, there is a scheme $g : B \to g(B)$ in A s.t. $|\psi_g(x) r| < \epsilon$ for $x \in B$.
- The ratio set RatioSet (G, μ) ⊂ ℝ is the closed subgroup of all essential values.
- Then the ratio set is either of the following: {0} (Type III₀), $\mathbb{Z} \log \lambda$ (Type III_{λ}), \mathbb{R} (Type III₁).
- For amenable groups, the ratio set is a complete invariant of o.e. (outside the notorious Type III₀).

The orbit equivalence class of the shift II

Theorem (Bjorklund, Kosloff & Vaes (21'); A-R (22'))

The only possible o.e. classes for regular Markov shift are Type II and Type III_1 .

Moreover: Type II occurs iff μ is equivalent to a stationary Markov measure ($P_n = P$ for all n).

- The exact classification of the shift was completely unknown until the last decade.
- Before that, only specific constructions of Bernoulli shifts of Type III were known, but not the exact Type III_λ.

Corollary

The only way in which a regular Markov shift is probability preserving, is when it is a classical stationary Markov chain.

The orbit equivalence class of the shift III

• If
$$\mu = \mu_{(P_n)_{n \in \mathbb{Z}}}$$
 is a Markov shift,

$$\psi_n(x) = \log \frac{d\mu \circ T^n}{d\mu}(X) = \log \prod_{k \in \mathbb{Z}} \frac{P_{k-n}(x_k, x_{k+1})}{P_k(x_k, x_{k+1})}.$$

• Outside certain examples, this is extremely complicated.

Theorem (A-R(22'))

If μ is a regular Markov shift, RatioSet $(\Pi, \mu) \subset \text{RatioSet} (T, \mu)$.

 In this formulation, "Π" stands for the non-singular modification of the finite permutations.

The asymptotic group I

Definition

Let $G \curvearrowright (X, \mu)$ be a non-singular action. Fix a compatible metric d on X. The **asymptotic group** to G is the class G' of all $T \in Aut(X, [\mu])$ s.t.

- *d*-asymptotic: $d(g.x,g.Tx) \xrightarrow[r \to \infty]{} 0$ for almost every $x \in X$.
- μ -asymptotic: $|\psi_g(x) \psi_{g \circ T}(x)| \xrightarrow[g \to \infty]{} 0$ for almost every $x \in X$.
- Using the triangle inequality (for *d*-asymptotic) and the cocycle property (for μ -asymptotic), the asymptotic group is indeed a group.
- In general, no containment relations between G and G'.

The asymptotic group II

Example (" E_0 -actions are asymptotic to E(G, 2)-actions")

 $X = 2^{\mathbb{Z}}$ with the metric $d(x, y) = 2^{-\inf\{|n|: x_n \neq y_n\}}$ and $G = \mathbb{Z}$ acting by shift.

- It is easy to see that Π is *d*-asymptotic to *T*.
- If μ is a regular Bernoulli shift, Π is also μ -asymptotic to T.
- If μ is a regular Markov shift this is no longer true.
- However, there are enough elements of Π that are μ -asymptotic to the shift.
- Thus, $\Pi \cap G'$ is a rich group.

The non-singular shift 0000 The asymptotic group

The asymptotic group III

Theorem (A-R (22'))

Let $G \curvearrowright (X, \mu)$ be a non-singular recurrent action of amenable group. For $f : X \to \mathbb{C}$, if f is G-invariant then it is G'-invariant.

- In particular, if G' is ergodic then G is ergodic.
- The ratio set can be characterized using the invariant functions of the "Maharam extension".
- Then e (G', μ) ⊂ e (G, μ) is a natural generalization of the above theorem.

The asymptotic group IV (on the proof)

Proof.

For simplicity assume $G = \mathbb{Z}$ acts via $T \in Aut(X,\mu)$ (measure preserving) and s is asymptotic to T.

- For $f: X \to \mathbb{R}$ uniformly continuous, $f(T^n x) f(T^n(Sx)) \xrightarrow{|n| \to \infty} 0$.
- By the ergodic theorem

$$\begin{split} \mathbb{E}(f|\mathrm{Inv}(\mathcal{T})) \circ S &= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\mathcal{T}^n(Sx)) \\ &= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\mathcal{T}^n x) = \mathbb{E}(f|\mathrm{Inv}(\mathcal{T})). \end{split}$$

- Approximating in L¹, the same holds for integrable f.
- If $f \circ T = f$ then $f \circ S = \mathbb{E}(f | \text{Inv}(T)) \circ S = \mathbb{E}(f | \text{Inv}(T)) = f$.

The asymptotic group V (on the proof)

• Same argument works for non-singular transformations using:

Theorem (Hurewicz's ergodic theorem)

Let $T \in Aut(X, [\mu])$ and set $w_n(x) = \frac{d\mu \circ T^n}{d\mu}(x)$. Then

$$\lim_{N\to\infty} \frac{\sum_{n=1}^{N} w_n(x) f(T^n x)}{\sum_{n=1}^{N} w_n(x)} \text{ exists for almost every } x \in X.$$

- For prob. preserving actions of amenable groups the ergodic theorem holds along Følner sequences (Lindenstrauss).
- However, for non-singular actions of general groups (even Abelian) the ergodic theorem fails.

The asymptotic group VI (on the proof)

• Typically, an "ergodic theorem" for an action $G \curvearrowright (X, \mu)$ is a statement of the following form:

 $\exists F_n \uparrow G, \forall f$, the ergodic averages of f along (F_n) converge.

• However, for the sake of the above argument one may relax this to the following weaker assertion:

 $\forall f, \exists F_n \uparrow G$, the ergodic averages of f along (F_n) converge.

• We call this weaker version ad hoc ergodic theorem.

Theorem (Danilenko (19'))

Every non-singular free action of an amenable group satisfies the ad hoc ergodic theorem.

The asymptotic group VII (on the proof)

- The proof of the ad hoc ergodic theorem relies on:
 - μ-hyperfiniteness of actions of amenable groups (Connes, Feldman & Weiss + Slaman & Steel).
 - ② The martingale convergence theorem: if *F_n* ↑ *F* are σ-algebras then E(· | *F_n*) → E(· | *F*).
- This reasoning goes beyond amenable groups, since non-amenable groups admit hyper-finite actions.

The asymptotic group VII (on the proof)

Example

Let F_r be the free group of rank $r \ge 2$ and $F_r \curvearrowright (\partial F_r, \nu)$.

- ∂F_r is a sub-shift of finite type of $\{s_1, \ldots, s_r\}^{\omega}$ and ν is a natural Markov measure.
- It is non-singular, recurrent, ergodic and Type III.
- Its orbit equivalence relation *E_t* is hyper-finite (Connes, Feldman & Weiss; Dougherty, Jackson & Kechris).
- This is true for every non-elementary hyperbolic group acting on its Gromov boundary with a Patterson-Sullivan measure.
- These actions are hyper-finite (Adams; Marquis & Sabok).

(日) (四) (三) (三)

Thank you

Einstein Institute of Mathematics, The Hebrew University of Jerusalem